Nirva Systems technical newsletter 02/2010 - page 1 n i rva

Nirva Systems technical newsletter — February 2010

NEW fEALUIEScceeeiiiiiieciiir s rr s s e e s s s s s s nms s s s s nms s s s e nmns s s s nnmnssssnnnnsssssnnnnnsnsnnnnnn 2
COMMANG SEACK ...ttt n e nnnnnnnee 2
TRIEAM SESSION ..coveiiiiiii ettt e e et e e e e et e e e e et e e e e et e e e eaaaaaeeeeat e aeeaaas 4
Write 10 OUIPUL DUTT@I ... 6
G o1 PP SEPRR 8
LA T T o= 8
Processor affinity ... 8
(= Lo = {11 PO PPPPPPPUPPPPPRN 8
7Y o U T o o | 8
HP DiIGIOGUE SEIVICEttt ettt ettt e e e e e e st bttt e e e e e e e e bbb e e e e e e s s nnaneeees 9
11 Lo o [T o 1 o o £= 3OS 1
Virtual printer in Nirva distriDULIONeeii e e 11
NEW COMPIIET <.t 11
RS T= T 7] o] o TN] PSSP 12
SBCUIEY .ttt ettt ettt e o4 e et e e e oo oo e e et e e e e e e e e e et e e e reeeaeeeaan 12
(=0 o I oo = o 4 o o T 12
Nirva Application Platform............ooo 12

[Y=Y A/ o TSR 13

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 2 n i rva

New features

Command stack

When testing or debugging procedures, it is often useful to be able to view the list of commands being
executed in the current procedure. Developers can already visualize this list in the Nirva console by using
the ‘debug’ and ‘verbose’ modes of Nirva.

However, when Nirva runs in service mode, or when it is remotely accessed, it might be helpful to visualize
in the administration interface the commands and procedures being executed in a particular session. An
enhancement of the SESSION:LIST command is now available to achieve this.

SESSION:LIST command

The SESSION:LIST command can be used to obtain the current command and procedure stack, As in Java
or C++ programming, each command or procedure in input is placed on the stack and is taken out of it at the
end of their execution. As a consequence, only commands and procedures awaiting execution (or being
executed) are displayed in the stack,

Please be aware that this enhancement is only available if Nirva has started in ‘Debug’ mode (please refer to
the Configuration/System/Parameters/Debug chapter of the Nirva documentation).

The following example illustrates the new functionality. The PERL procedure shown below uses the
SESSION:LIST command and displays the results as populated in the STACK column of the SESSIONS
table generated by the command.

main.pl:

Get sessions information, including current

NV: : Command ("NV_CMD=|SESSION:LIST| WITH ACTUAL=|YES|");

Get sessions number

NV : : Command ("NV_CMD=|OBJECT : TABLE GET NUM ROWS| NAME=|SESSIONS|") ;
my $num sessions = $NV::RESULT;

For each session get number of commands in stack trace (corresponding to lines number
in STACK column)
Then display stack in console
for (my $i=1; $i <= $num sessions; $i++){
NV: : Command ("NV_CMD= | OBJECT : TABLE_GET_CELL_NUM LINES| NAME=|SESSIONS| ROW=|$i| COLNAME=|STACK|");
my $num_session procs = $NV::RESULT;
my @session stack = ();
for (my $j=1; $Jj <= $num session procs; $j++){
NV: : Command ("NV_CMD= | OBJECT : TABLE_GET CELL_LINE| NAME=|SESSIONS| ROW=|$i| COLNAME=|STACK |
LINE_INDEX=|$3j|");
push (@session_stack, $NV: :RESULT) ;
}
if ($#session stack > 0){
NV: : Command ("NV_CMD= | OBJECT : TABLE_GET CELL LINE| NAME=|SESSIONS| ROW=|$i|

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 3 n i rva

COLNAME= | IDENTIFIER|") ;
my $id = $NV::RESULT;
print "Identifier : $id\n";
foreach my Saction (@session_stack){

print "\tSaction\n";

URL to launch the test (requires the SYSTEM_SESSION_INFO permission):

http://localhost:1081/nv_app NEWSLETTER/NVS?Command&NV_PROC=perl:NL1l/Article3/main&NV_CL
OSE_SESSION=NO&NV_USER=nvadmin&NV_PASSWORD=nirva

Result (after deletion of the command display):

HHE

Identifier : 43E806E696
Command: SYSTEM:MISC:NOP (B)
Procedure: perl:perl:NL1l/Article3/main
Command: SYSTEM:SESSION:LIST (P)

HHE

One can see that only the procedures being executed are present in the stack. In this example, this is the
test procedure and, as expected, the SESSION:LIST command being executed when executing the
command. If other sessions exist and actively process a command or procedure during the test, the result
would also display the other active sessions:

HEHHHHHHHH A HHH A HH
Identifier : S5DOAB46D3E
Command: SYSTEM:MISC:NOP (V)
Procedure: session open
Command: SYSTEM:MISC:NOP (P)
Procedure: perl:perl:session open
Command: SYSTEM:MISC:NOP (P)
Procedure: perl:perl:Portals/Main/session open
Command: SYSTEM:MISC:NOP (P)
Procedure: perl:perl:Settings/load application settings
Command: SYSTEM:MISC:NOP (P)
Procedure: perl:perl:Modules/Database/search
Command: SYSTEM:MISC:NOP (P)
Procedure: perl:perl:Modules/Database/load query file
Command: SYSTEM:OBJECT:CREATE (P)
HHEHHHHHHHH A HHH AR HH
HHEHHHHHHHH A HHH AR HH
Identifier : 691F53A28A
Command: SYSTEM:MISC:NOP (B)
Procedure: perl:perl:NL1l/Article3/main
Command: SYSTEM:SESSION:LIST (P)
HH##HHHHHH A HHH A HH

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 4 n i rva

The top part of the results shows procedures and commands currently in the stack of the ‘5SDOAB46D3E’
session. This particular example displays the creation of a session in an application.

Administration interface

This enhancement also allows the administration interface to display the current ‘stack’ for a particular
session. This function is accessed by clicking on the chosen session number in the ‘Sessions’ tab. To
display the stack related to a particular session, the session must be active and processing as executed
commands and procedures are removed from the stack once completed.

Conclusion

With the SESSION:LIST command enhancement it is now possible to identify a problem occurring in a long
procedure. It this procedure takes longer than expected, a list of its stack displays what is currently executing
and allows to identify potential problems.

This functionality can also be accessed remotely or with Nirva started in service mode.

More information

The WHAT parameter of the SESSION:LIST command can be used to filter the results: For a particular
application, a service or a session ID.

The new ‘nvd’ tool (see Debug tool in this document) will allow the listing of all command lines associated
with a session or even with a future session (e.g. the next Web session). These enhancements follow a
deliberate direction Nirva Systems is taking to enhance application development and maintenance.

Thread session

In order to trigger an asynchronous task in an execution flow, one previously had to trigger a predefined task.
Data sharing between caller and called was deemed cumbersome.

The new THREAD:CREATE command can be used to alleviate these difficulties by simply mentioning which
procedure to execute, with its optional parameters such user ID, output procedure or the error procedure.

The thread that is created will remain independent from the calling thread: the caller can terminate before the
called without the latter being affected.

The following example illustrates the case where a Perl procedure (test_thread.pl) needs to trigger a time
consuming and heavy process (e.g. sending a 500 MB to an external FTP server). The application must
return control to the user as soon as possible to allow further processing while the 500 MB will be transferred
at the available network speed.

The long process is represented by the Perl thread.pl procedure. The slow part is simulated by a series of
calls to MISC:SLEEP of 5 seconds each

test_thread.pl:

NV: :GetSessionId() ;
my $session id = $NV::RESULT;

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 5 n i rva

print " [ROOT] Parent process, session id is $session_id\n";

print " [ROOT] Create a thread session to do an asynchronous task...\n";
NV: : Command ("NV_CMD= | THREAD: CREATE| PROC=|perl:NL1l/Articlel/thread|
CLOSE=|perl:NL1/Articlel/thread close| "); (1)

my S$thread session id = $NV::RESULT; (2)

print " [ROOT] A new thread (Sthread session id) has been created\n";

print " [ROOT] End of the parent process...\n";

test_post_proc.pl:

print " [ROOT POST] Post proc of test\n";

test_session_close.pl:

print " [ROOT CLOSE] Session close\n";

thread.pl:

NV: :GetParameter ("NV_CALLING SESSION"); (3)
my $calling session_id = $NV::RESULT;

NV: :GetSessionId() ;
my S$current session id = $NV::RESULT;

print "\t [THREAD] Thread has been started by session $calling session id, its session id

is scurrent session id\n";

for(my $j = 0; $j < 5; $j++){
#wait 5s to simulate extensive process...
NV: : Command ("NV_CMD=|MISC:SLEEP| TIME=|5000|"); (4)
print "\t [THREAD] Send a big file!\n";

}

print "\t [THREAD] S$current session_ id Ended\n";

Command URL:

http://localhost:1081/nv_app NEWSLETTER/NVS?Command&NV_PROC=perl:NLl/Articlel/test threa
d&NV_POST PROC=perl:NL1l/Articlel/test_post_ proc&NV_SESSION_ CLOSE=perl:NL1l/Articlel/test_
session_close

Result (after deletion of commands display):

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 6 n i rva

HEHHHHHHHH AR R AR R R R R

[ROOT] Parent process, session id is E9A9E713E3

[ROOT] Create a thread session to do asynchronous tasks...
[ROOT] A new thread (6C5C9F1586) has been created
[]

ROOT] End of the parent process...

[THREAD] Thread has been started by session E9A9E713E3,
its session id is 6C5C9F1586
[ROOT POST] Post proc of test
[ROOT CLOSE] Session close
[THREAD] Send a big file!
[] Send a big file!
[] Send a big file!
[THREAD] Send a big file!
[] Send a big file!
[] 6C5C9F1586 Ended
[THREAD CLOSE] Closing the thread
HHEHHHEHHHH A HH A R R R R

Log entries prefixed by [ROOT] are generated by the calling procedure whilst log entries prefixed by
[THREAD] are generated by the called asynchronous session. Messages clearly show that the
asynchronous task is still working despite the calling procedure being terminated, even closed (session
close).

Note: sessions are created and not children of their parents: the calling session loses control of the sessions
that is created. These sessions are independent from one another. They are ‘aware’ of each other but do not
share information about their state.

Conclusion

Asynchronous execution is successfully handled. The life span of the called session is limited to the
execution of the procedure it triggers. The calling session is not waiting for called session to close before
closing itself. As a result, please note that threads created this way should not manipulate or access objects
controlled by the calling session as they may be modified or deleted during execution.

More information
The LANGUAGE parameter can be used to change the session language.

The PROCF parameter can be used to define a procedure that can be executed if an error occurs in the
created session.

Write to output buffer

The command COMMAND :SET_OUTPUT_BUFFER can be used to return a character string that can be
retrieved with the now traditional $NV::RESULT in PERL or GetResult() with the Java connector. The
immediate advantage is to be able to return a value without having to create an object in the session.

With Nirva always wiping out buffer content before each command, it is necessary to call the command as
the last step in the procedures or services.

main.pl:

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 7 n i rva

#This is the main perl proc file

#Will call another proc and check the output buffer to get the result

my $result = NV::Command ("NV_PROC=|perl:NLl/Article2/proc_hello| NAME=|John|");
my S$greeting = S$NV::RESULT;

print "The greeting is: S$greeting\n";

print "The result of the procedure is: $result\n";

NV: : Command ("NV_Proc=|Java:TestOutputBuffer:set|") ;
my Smessage = SNV::RESULT;

print "Message: S$message\n";

NV : : Command ("NV_CMD= | OBJECT : CREATE | TYPE=|STRING| NAME=|GREETING| VALUE=|$greeting]
REPLACE=|YES| NV_CONTAINER=|nvdef|");

NV: : Command ("NV_CMD= | OBJECT : CREATE | TYPE=|STRING| NAME=|MESSAGE| VALUE=|$message |
REPLACE=|YES| NV_CONTAINER=|nvdef|") ;

test_post_proc.pl:

print " [ROOT POST] Post proc of test\n";
print " [PROC_HELLO] Start\n";

Get the name
NV: :GetParameter ("NAME") ;
my Sname = S$NV::RESULT;

Write the greeting in the output buffer
NV : : Command ("NV_CMD= | COMMAND : SET OUTPUT BUFFER| VALUE=|Hello, $name Smith|");
print " [PROC_HELLO] End\n";

Command URL:
http://localhost:1081/nv_app NEWSLETTER/NVS?Command&NV_ PROC=perl:NL1l/Article2/main

Result (after deletion if commands display):

HEHHHHHHHH A HH AR R R R R
[PROC_HELLO] Start
[PROC_HELLO] End

The greeting is: Hello, John Smith
The result of the procedure is: 1
Message: hello world from a java procedure!

HH

Conclusion

Rather than creating a temporary object to return a value, it is now possible to get an additional buffer. This
must be used with caution as a Nirva command inserted after the set_output_buffer eliminates it. Using the
command in the service init/exit and service session init/exit sections will not work.

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 8 n i rva

More information

This command can be used in the NV_POST_PROC procedures.

64 bits

The 64 bit version of the nvc client library is now delivered with Nirva. This allows some connectors and
particularly the Java client connector running in 64 bits (a 64 bits client JVM can now be used).

The 64 bits of the virtual printer connector is also available.

Windows 7

Nirva has been successfully tested on Windows 7.

The virtual printer connector also installs now on Windows 7.

Processor affinity

The Nirva production license is based on the number of processor cores. Until now it was not possible to
make Nirva running on a machine having more cores than the number defined in the license.

Now, Nirva takes care of the processor core affinity and doesn’t enter in demonstration mode if this matches
the number of processors of the license.

Under Windows and Linux, the affinity mask is automatically set by program following the number of cores of
the license.

Under Solaris and HP-UX, the affinity must be set externally by using OS tools (processors sets).

This functionality is not available on AIX because there is no affinity control on this OS (we can limit only to a
single core).
Large files

Nirva is now able to manage file objects greater that 2GB. This concerns Nirva itself and the storage service.

Debug tool

Nirva provides a new debug tool named nvd. This tool can connect an existing session or wait for a session
of a certain type to be opened and receives some debug information from the session. Nvd can also open a
new session and execute a command or a procedure. There are several debug levels.

This tool runs only on the local server. It works also when Nirva is in service mode.

Examples

Create a session, run a procedure and exit the session:

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 9

C:\>nvd -r p

Waiting for
Session 37EB

Current comm
Command: SYS

15:

Debug:

15:
15:
15:
15:
15:

Debug:

153
153

Debug:

153
153

16

16
16
16
16
16

16
16

16
16

:38 sta
param
LEVE
NV_P
NV_P
PID
TYPE
238 ===
238 ===
:38 end
:38 sta
:38 end
outpu
:38 sta
:38 end
outpu
g3 ===
g3 ===

erl:ptest -1 3
a session to be attached...
FF35D3 has been attached

and stack:
TEM:MISC:NOP (V)

rt SYSTEM:MISC:NOP (V)
BLEEEs

L = 3

OST PROC =

ROC = session_open

= 5100

Start Native procedure: session open

End native procedure: session_open
SYSTEM:MISC:NOP (V)

rt SYSTEM:MISC:NOP (C)
SYSTEM:MISC:NOP (C)

t buffer: 168

rt SYSTEM:SESSION:CLOSE (C)
SYSTEM: SESSION:CLOSE (C)

t buffer: 168

Start Native procedure: session close

End native procedure: session close

Console has been closed by nirva

Other examples:

Connect the

nvd

-8 next:

Connect the

nvd

-8 next:

next web session with level 3 (open the nirva config to see it):
web -1 3

next threaded session for application myapp with level 2:

thread -1 2 -a myapp

Connect a specific session with level 1:
-s CB47B271A7

nvd

HP Dialogue service

The following functionality has been added to the Dialogue service:

m Static parameters

m Dynamic parameters

m Control file

nirva

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 10 n i rva

Static parameters

One can define static Dialogue command line parameters associated to a given document. This is done from
the user interface:

[% POD - Hybrid Mail Mana... * " [NIRVA configuration on ...

é(— C M % htp//localhost1081/Config/NVSIcomm and&NY_PROC=(Config/config) &N

nirva

SYSTEM Application

Documentation Change document Letter parameters

Output farmat:
Input file magp: INEMLINPUT
Qutput file map: OUT:PDFOUTPUT

Ex

—myparaml
—IYPAram

or by program using the DIALOGUE:DOCUMENT:SET_PARAM command.

This is useful for defining variables at document level.

Dynamic parameters

It was already possible to define extra command line parameter in a dynamic way by using the
EXTRA_PARAM parameter in the DOCUMENT:COMPOSE or DOCUMENT:COMPOSE_DIRECT
commands. Now this parameter may also point to a string list object containing the command line
parameters to add.

Example:

NV: : Command ("NV_CMD= | OBJECT : CREATE | TYPE=|FILE| NAME=|IN|
FILENAME=|C:\\Nirva\\Applications\\NVDEF\\Procs\\Dialogue\\test.xml| PERSIST=|-1|
REPLACE=|YES|") ;

NV : : Command ("NV_CMD= | OBJECT : CREATE | TYPE=|FILE| NAME=|OUT|
FILENAME=|C:\\Nirva\\Applications\\NVDEF\\Procs\\Dialogue\\result.pdf| PERSIST=|-1|
REPLACE=|YES|") ;

NV : : Command ("NV_CMD= | OBJECT : CREATE| TYPE=|STRINGLIST| NAME=|PARAM| VALUE=|-paraml;-
param2| REPLACE=|YES| SEPARATOR=|;|");

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 11 n i rva

NV : : Command ("NV_CMD= | DIALOGUE : DOCUMENT : COMPOSE | WORKSPACE=|DNV| DOCUMENT=|Letter
ERROR NOSIZE=|YES| EXTRA PARAM=|PARAM| CTRL FILE=|YES|");

Control file

The Dialogue service can now use the Dialogue control file feature. This option allows sending command
line parameters from a file instead of sending them from the command line. In order to activate the control
file feature, just add the CTRL_FILE=|YES| parameter to the DOCUMENT:COMPOSE or
DOCUMENT:COMPOSE_DIRECT commands.

Example:

NV: : Command ("NV_CMD=|OBJECT : CREATE | TYPE=|FILE| NAME=|IN|
FILENAME=|C:\\Nirva\\Applications\\NVDEF\\Procs\\Dialogue\\test.xml| PERSIST=|-1|
REPLACE=|YES|") ;

NV : : Command ("NV_CMD= | OBJECT : CREATE | TYPE=|FILE| NAME=|OUT|
FILENAME=|C:\\Nirva\\Applications\\NVDEF\\Procs\\Dialogue\\result.pdf| PERSIST=|-1|
REPLACE=|YES|") ;

NV: : Command ("NV_CMD= | DIALOGUE : DOCUMENT : COMPOSE | WORKSPACE=|DNV| DOCUMENT=|Letter |
ERROR NOSIZE=|YES| CTRL FILE=|YES|");

Modifications

Virtual printer in Nirva distribution

The virtual printer (VP) is a Nirva connector that retrieves files issued from desktop applications and sends
them on a Nirva server to be processed. This can be useful for hybrid mail (post on demand) or archiving
Nirva based solutions.

The virtual printer is seen as a printer on the user’s workstation.

The virtual printer connector is located on the SDK/Connectors/virtual_printer subdirectory of Nirva
installation directory

Win32 and x64 versions are available.

Please contact us for further information and documentation about this connector.

New compiler

The Nirva components have been recompiled under Windows with Visual C++ 2008 instead of Visual C++
2003. This was necessary for some new Nirva features (ex. large file management).

http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 12 n i rva

The Nirva services will progressively migrate to this compiler when there will be some modifications to them.
This is the case today with STORAGE, DIALOGUE and PDF services. Services compiled with Visual 2003
can be installed on Nirva compiled under Visual 2008. The opposite is also true.

The use of this new compiler may require the installation of a Microsoft redistribution patch for some old
platforms (ex Windows 2003 Server). This patch is available at the following site:

http://www.microsoft.com/downloads/details.aspx?FamilylD=9b2da534-3e03-4391-8a4d-
074b9f2bc1bf&displaylang=en

The Perl part of Nirva stays compiled with Visual 2003 because the Perl glob function seems not to work
when compiled with Visual 2008. Functionally this does not change anything and your perl procedure will
continue to work in the same way.

Session list

The WITH_ACTUAL parameter in the SESSION:LIST command has been replaced by WITH_CURRENT.
WITH_ACTUAL is still available for compatibility reason but is deprecated.

Security

“w

A security issue has been corrected. The string is not any more authorized in the NV_PROC or
NV_XML_XSL parameters or other similar parameters requesting procedure or XSL file names.

Bug corrections

Nirva Application Platform

The TABLE_JOIN command may fail and potentially crash Nirva when the 3.0.011
foreign key is a primary key and is not found.

Some error information was missing in the standard HTML error message 3.0.011
returned by Nirva to a Web browser.

Application listener tables were loaded after the application init procedure 3.0.010
making the listener list not visible from application init procedures. This may

create problems when the init procedure tries to automatically create the missing

listeners.

Defining a listener with an open procedure may crash Nirva. This bug occurs 3.0.009
only on 3.0.008 version.

http://www.microsoft.com/downloads/details.aspx?familyid=9b2da534-3e03-4391-8a4d-074b9f2bc1bf&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=9b2da534-3e03-4391-8a4d-074b9f2bc1bf&displaylang=en
http://www.nirva-systems.com/

Nirva Systems technical newsletter 02/2010 - page 13

Possible compatibility issues with the recompiled perl on windows version 3.0.009
3.0.008 so we came back to a Perl compiled with an older compiler (only the

Perl part is concerned, nirva is still compiled with the Visual C++ 2008 compiler).
Especially the Perl glob functionality was not working.

Under Windows, hardware exception was not handled correctly (occurs in 3.0.009
3.0.008 only). This generates a Nirva crash when there is an hardware exception
(for example when trying to access a bad memory address)

Dotnet connector: the constructor with the connect string was creating a 3.0.008
compilation error.

The namespace for output messages was not the same than the one defined in 3.0.008
the WSDL when using a namespace prefix.

Possible deadlock when requesting a command to be executed by another 3.0.008
session from a procedure a service. This does not occur with named sessions

but only when the NV_SESSION_ID parameter is given from a procedure or

service command.

The alias path was forced in lowercase making some directories unreachable 3.0.007
under Unix.

The OBJECT:TABLE_MODIFY_COLUMN command was not returning error in 3.0.007
case of error.

The OBJECT:TABLE_SEARCH MAXDOCS command parameter was not 3.0.007

k)

working with a query equal to “*”.

PDF Service

The GET_TEXT command may produce some bad characters when these 1.40
characters are not included in the character map associated to the font in the
PDF flow.

nirva

http://www.nirva-systems.com/

	New features
	Command stack
	Thread session
	Write to output buffer
	64 bits
	Windows 7
	Processor affinity
	Large files
	Debug tool
	HP Dialogue service

	Modifications
	Virtual printer in Nirva distribution
	New compiler
	Session list
	Security

	Bug corrections
	Nirva Application Platform
	PDF Service

